Name Entity Cube in History Domain Software design

Wenbin Li

The Saarbrücken Graduate School of Computer Science

Please note: some details will be changed within the actual implementation.

content

Data Preparation □ Preprocessing **c** Relationship Analysis □ Vi sual i zati on □ Software Engineering □ Schedul e □ Motivation □ Demo

Data preparation

□ About Civil War

□ Sources:

• University of Virginia: HIUS 403: "Digital History and the American Civil War." (Newspaper)

• Operation:

□ Retrieve text-format newspaper from the website

• Tool s:

Websphi nx
 http://www.cs.cmu.edu/~rcm/websphi nx/

preprocessing

□ POS tagging

□ NER tagging

□ Tools: Stanford NLP Tools
 http://nlp.stanford.edu/software/index.shtm
 l

Relationship analysis

Record:

- { Pairs (Name_A, Name_B), weight }
- Data Structure:
 - □ Undirected Graph
- **D** Tool s:
 - JUNG Java Universal Network/Graph Framework

visualization

Relationship Web Search

Software engineering

□ GUI Design

Extensi bility

• Customize Database for specific research topics, e.g. Civil War \rightarrow World War II

□ Modularity

• Data Retrieval \rightarrow Preprocessing \rightarrow Relationship Analysis \rightarrow Visualization

Usability

- Balance between Precision and Recall
- (ensure low-occurrence name appear in the map might conflict with specific threshold in the RA algorithm – to be settled)

schedule

Prototype (1 week)Report (2-3 days)

Motivation

□General idea

• Object-level Search

□ Specific usefulness

• Comparative Study in History Character

Object-level search

Traditional search

- For Internet: Page-Level Search
- More Generally: input entry → return related entries

□ Object-Level Search (Vertical Search)

- More precisely meet users' information need
- More stereo about the query

Object-level search

D Example:

Compari son:

	Traditional Search	0bj ect-Level Search
Tech.	IR	DB ML
Pros.	Ease of author Ease of use	Powerful Query Capability; Aggregate Answer
Cons.	Limited Query Capability	Where & How to get the Objects?

Relative Search

Display Related history characters
(clustering analysis)

□ Comparative analysis (need further interface for access to every entry)

More delicate work can be done by semantic analysis of different name entities (edge representation)

Relationship btw OLS & RS

RS can be seen as a simple case for OLS.Technically speaking

Measurement (& analysis) of occurrence

general i zed

0bj ect - Level Anal ysi s

Discussion

Further analysis of data
Possible measurement of relationship
Correspondent GUI

End

D Thanks!